Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block16 [2025/11/22 13:34] – angelegt mexleadminelectrical_engineering_and_electronics_1:block16 [2025/11/23 12:21] (aktuell) mexleadmin
Zeile 31: Zeile 31:
 ===== Core content ===== ===== Core content =====
  
-...+===== Generalization of the Magnetic Field Strength ===== 
 + 
 +So far, only the rotational symmetric problem of a single wire was considered in formulaI.e a current $I$ and the length $s$ of a magnetic field line around the wire was given to calculate the magnetic field strength $H$: 
 + 
 +\begin{align*} 
 + \quad  H_\varphi  ={I\over{s}} = {{I}\over{2 \cdot \pi \cdot r}}  \quad  \Leftrightarrow  \quad I = H_\varphi \cdot {s}  \quad \quad \quad | \quad \text{applies only to the long, straight conductor} 
 +\end{align*} 
 + 
 +Now, this shall be generalizedFor this purpose, we will look back at the electric field. \\ 
 +For the electric field strength $E$ of a capacitor with two plates at a distance of $s$ and the potential difference $U$ holds: 
 + 
 +\begin{align*} 
 +U = E \cdot s \quad \quad | \quad \text{applies to plate capacitor only} 
 +\end{align*} 
 + 
 +In words: The potential difference is given by adding up the field strength along the path of a probe from one plate to the other. \\  
 +This was extended to the vltage between to points $1$ and $2$. Additionally, we know by Kirchhoff's voltage law that the voltage on a closed path is "0"
 + 
 +\begin{align*} 
 +U_{12} &= \int_1^2 \vec{E} \; {\rm d}\vec{s} \\ 
 + 
 +U &= \oint \vec{E} \; {\rm d}\vec{s} =0 \\ 
 + 
 +\end{align*} 
 + 
 +We can now try to look for similarities. Also for the magnetic field, the magnitude of the field strength is summed up along a path to arrive at another field-describing quantity. \\ 
 +Because of the similarity the so-called **magnetic potential difference $V_m$** between point $1$ and $2$ is introduced: 
 + 
 +\begin{align*} 
 +V_m &= H \cdot s \quad \quad | \quad \text{applies to rotational symmetric problems only} \\ 
 +\end{align*} 
 + 
 +\begin{align*} 
 +\boxed{ V_m = V_{m, 12} = \int_1^2 \vec{H} \; {\rm d}\vec{s} \\ 
 + V_m = \oint \vec{H} {\rm d}\vec{s} = \theta } 
 +\end{align*} 
 + 
 +We need to take a loser look here. Any closed path in the static electric field leads to a potential difference of $U = \oint \vec{E} \; {\rm d}\vec{s} =0$. \\ 
 +BUT: closed paths in the static magnetic field leads to a magnetic potential difference which is **not mandatorily** $0$! $ V_m = \oint \vec{H} {\rm d}\vec{s} = \theta$ \\ \\ 
 +Another new quantity is introduced: the **magnetic voltage $\theta$**: 
 +  - The magnetic voltage $\theta$ is the magnetic potential difference on a closed path. 
 +  - Since the magnetic voltage $\theta$ is valid for exactly __one turn__ along our single wire, $\theta$ is also equal to the current through the wire: \\ \begin{align*} \theta = H \cdot s = I  \quad \quad | \quad \text{applies only to the long, straight conductor} \end{align*}  
 +  - The  magnetic potential difference can take a fraction or a multiple of one turn and is therefore  **not mandatorily** equal to $I$. 
 +  - The magnetic voltage is generalized in the following box. 
 +<callout icon="fa fa-exclamation" color="red" title="Notice:"> 
 + 
 +The path integral of the magnetic field strength along an arbitrary closed path is equal to the free currents (= current density) through the surface enclosed by the path. 
 + 
 +The magnetic voltage $\theta$ (and therefore the current) is the cause of the magnetic field strength. \\ 
 + 
 +This leads to the **{{wp>Ampere's Circuital Law}}** 
 + 
 +|  \begin{align*} \boxed{\oint_{s} \vec{H} {\rm d} \vec{s} = \theta } \end{align*}| The magnetic voltage $\theta$ can be given as \\ (nbsp)(nbsp) •  $\theta = I \quad \quad \quad \ $ for a single conductor \\  (nbsp)(nbsp) • $\theta = N \cdot I \quad \:\; \, $ for a coil\\  (nbsp)(nbsp) • $\theta = \sum_n \cdot I_n \quad$ for multiple conductors\\  (nbsp)(nbsp) • $\theta = \iint_A \; \vec{S} {\rm d}\vec{A}$ for any spatial distribution (see [[block15]])| 
 + 
 +The unit of the magnetic voltage $\theta$ is **Ampere** (or **Ampere-turns**).  
 + 
 +In the english literature the magnetic voltage is called **{{wp>Magnetomotive force}}** 
 + 
 +</callout> 
 +<callout icon="fa fa-exclamation" color="red" title="Notice:"> 
 +${\rm d}\vec{s}$ and ${\rm d}\vec{A}$ in $\oint_{s} \vec{H} {\rm d} \vec{s} = \theta = \iint_A \; \vec{S} {\rm d}\vec{A}$ build a right-hand system. \\  
 +  - Once the thumb of the right hand is pointing along ${\rm d}\vec{A}$, the fingers of the right hand show the correct direction for ${\rm d}\vec{s}$ for positive $\vec{H}$ and $\vec{S}$ 
 +  - Currents into the direction of the right hand's thumb count positive. Currents antiparallel to it count negative. 
 + 
 +<WRAP> 
 +<imgcaption BildNr1065 | Right hand rule> 
 +</imgcaption> \\ 
 +{{drawio>Righthandrule.svg}}  
 +</WRAP> 
 + 
 +</callout> 
 + 
 +~~PAGEBREAK~~ ~~CLEARFIX~~ 
 +==== Recap of the fieldline images ==== 
 + 
 +<WRAP group><WRAP half column> 
 +=== longitudinal coil === 
 +<WRAP> 
 +<imgcaption BildNr04 | Magnetic field in a longitudinal coil></imgcaption> \\ 
 +{{url>https://www.falstad.com/vector3dm/vector3dm.html?f=SolenoidField&d=streamlines&sl=none&st=3&ld=5&a1=21&a2=30&a3=100&rx=63&ry=1&rz=2&zm=2.396 700,450 noborder}} 
 +</WRAP> 
 + 
 +A longitudinal coil can be seen in <imgref BildNr04>. \\  
 +The magnetic field in a toroidal coil is often considered as homogenious in the inner volume, when the length $l$ is much larger than the diameter: $l \gg d$. \\ 
 +With a given number $N$ of windings, the magnetic field strength $H$ is 
 + 
 +\begin{align*} 
 +\theta = H \cdot l = N \cdot I 
 +\end{align*} 
 +\begin{align*} 
 +\boxed{H = {{N \cdot I}\over{l}}}  \biggr | _\text{longitudinal coil} 
 +\end{align*} 
 + 
 +</WRAP><WRAP half column> 
 +=== toroidal coil === 
 +<WRAP> 
 +<imgcaption BildNr05 | Magnetic field in a toroidal coil></imgcaption> \\ 
 +{{url>https://www.falstad.com/vector3dm/vector3dm.html?f=ToroidalSolenoidField&d=streamlines&sl=none&st=1&ld=8&a1=77&a2=26&a3=100&rx=0&ry=0&rz=0&zm=1.8 700,450 noborder}} 
 +</WRAP> 
 + 
 +A toroidal coil has a donut-like setup. This can be seen in <imgref BildNr05>. \\  
 +The toroidal coil is often defined by:  
 +  * The minor radius $r$: The radius  of the circular cross-section of the coil. 
 +  * The major radius $R$: The distance from the center of the entire toroid (the center of the hole) to the center of the circular cross-section of the coil. 
 +For reasons of symmetry, it shall get clear that the field lines form concentric circles. \\ 
 +Also the magnetic field strength $H$ in a toroidal coil is often considered as homogenious, when $R \gg r$. With a given number $N$ of windings, the magnetic field strength $H$ is 
 + 
 +\begin{align*} 
 +\theta = H \cdot 2\pi R = N \cdot I  
 +\end{align*} 
 +\begin{align*} 
 +\boxed{H = {{N \cdot I}\over{2\pi R}}} \biggr | _\text{toroidal coil} 
 +\end{align*} 
 + 
 +</WRAP></WRAP> 
  
 ===== Common pitfalls ===== ===== Common pitfalls =====
Zeile 37: Zeile 152:
  
 ===== Exercises ===== ===== Exercises =====
-==== Worked examples ==== 
  
-...+<panel type="info" title="Task 3.2.3 Magnetic Potential Difference"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 + 
 +<WRAP> 
 +<imgcaption BildNr05 | different trajectories around current-carrying conductors> 
 +</imgcaption> 
 +{{drawio>Task3MagneticFieldCurrentFlowingConductor.svg}} \\ 
 +</WRAP> 
 + 
 +Given are the adjacent closed trajectories in the magnetic field of current-carrying conductors (see <imgref BildNr05>). Let $I_1 = 2~\rm A$ and $I_2 = 4.5~\rm A$ be valid. 
 + 
 +In each case, the magnetic potential difference $V_{\rm m}$ along the drawn path is sought. 
 + 
 + 
 +#@HiddenBegin_HTML~323100,Path~@# 
 + 
 +  * The magnetic potential difference is given as the **sum of the current through the area within a closed path**. 
 +  * The direction of the current and the path have to be considered with the righthand rule. 
 + 
 +#@HiddenEnd_HTML~323100,Path~@# 
 + 
 +#@HiddenBegin_HTML~323102,Result a)~@# 
 +a) $V_{\rm m,a} = - I_1 = - 2~\rm A$ \\ 
 +#@HiddenEnd_HTML~323102,Result~@# 
 + 
 +#@HiddenBegin_HTML~323103,Result b)~@# 
 +b) $V_{\rm m,b} = - I_2 = - 4.5~\rm A$ \\ 
 +#@HiddenEnd_HTML~323103,Result~@# 
 + 
 +#@HiddenBegin_HTML~323104,Result c)~@# 
 +c) $V_{\rm m,c} = 0 $ \\ 
 +#@HiddenEnd_HTML~323104,Result~@# 
 + 
 +#@HiddenBegin_HTML~323105,Result d)~@# 
 +d) $V_{\rm m,d} = + I_1 - I_2 = 2~\rm A - 4.5~\rm A = - 2.5~\rm A$ \\ 
 +#@HiddenEnd_HTML~323105,Result~@# 
 + 
 +#@HiddenBegin_HTML~323106,Result e)~@# 
 +e) $V_{\rm m,e} = + I_1 = + 2~\rm A$ \\ 
 +#@HiddenEnd_HTML~323106,Result~@# 
 + 
 +#@HiddenBegin_HTML~323107,Result f)~@# 
 +f) $V_{\rm m,f} = 2 \cdot (- I_1) = - 4~\rm A$ \\ 
 +#@HiddenEnd_HTML~323107,Result~@# 
 + 
 +</WRAP></WRAP></panel> 
 + 
 +{{page>electrical_engineering_and_electronics:task_jfzlmsucghsqvop5_with_calculation&nofooter}} 
 +{{page>electrical_engineering_and_electronics:task_kmp8r8y6lvwjnoc3_with_calculation&nofooter}} 
 +{{page>electrical_engineering_and_electronics:task_ddjurcpk494go2q1_with_calculation&nofooter}} 
  
 ===== Embedded resources ===== ===== Embedded resources =====