Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block16 [2025/11/22 19:33] – [Exercises] mexleadmin | electrical_engineering_and_electronics_1:block16 [2025/11/23 12:21] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 33: | Zeile 33: | ||
| ===== Generalization of the Magnetic Field Strength ===== | ===== Generalization of the Magnetic Field Strength ===== | ||
| - | So far, only the rotational symmetric problem | + | So far, only the rotational symmetric problem |
| \begin{align*} | \begin{align*} | ||
| Zeile 43: | Zeile 43: | ||
| \begin{align*} | \begin{align*} | ||
| - | U = E \cdot s \quad \quad | \quad \text{applies to capacitor only} | + | U = E \cdot s \quad \quad | \quad \text{applies to plate capacitor only} |
| \end{align*} | \end{align*} | ||
| Zeile 85: | Zeile 85: | ||
| | \begin{align*} \boxed{\oint_{s} \vec{H} {\rm d} \vec{s} = \theta } \end{align*}| The magnetic voltage $\theta$ can be given as \\ (nbsp)(nbsp) • $\theta = I \quad \quad \quad \ $ for a single conductor \\ (nbsp)(nbsp) • $\theta = N \cdot I \quad \:\; \, $ for a coil\\ | | \begin{align*} \boxed{\oint_{s} \vec{H} {\rm d} \vec{s} = \theta } \end{align*}| The magnetic voltage $\theta$ can be given as \\ (nbsp)(nbsp) • $\theta = I \quad \quad \quad \ $ for a single conductor \\ (nbsp)(nbsp) • $\theta = N \cdot I \quad \:\; \, $ for a coil\\ | ||
| - | The unit of the magnetic voltage $\theta$ is **Ampere** (or **Ampere-turns**). | + | The unit of the magnetic voltage $\theta$ is **Ampere** (or **Ampere-turns**). |
| + | |||
| + | In the english literature the magnetic voltage is called **{{wp> | ||
| </ | </ | ||
| Zeile 101: | Zeile 103: | ||
| </ | </ | ||
| + | ~~PAGEBREAK~~ ~~CLEARFIX~~ | ||
| + | ==== Recap of the fieldline images ==== | ||
| + | <WRAP group>< | ||
| + | === longitudinal coil === | ||
| + | < | ||
| + | < | ||
| + | {{url> | ||
| + | </ | ||
| + | A longitudinal coil can be seen in <imgref BildNr04> | ||
| + | The magnetic field in a toroidal coil is often considered as homogenious in the inner volume, when the length $l$ is much larger than the diameter: $l \gg d$. \\ | ||
| + | With a given number $N$ of windings, the magnetic field strength $H$ is | ||
| + | |||
| + | \begin{align*} | ||
| + | \theta = H \cdot l = N \cdot I | ||
| + | \end{align*} | ||
| + | \begin{align*} | ||
| + | \boxed{H = {{N \cdot I}\over{l}}} | ||
| + | \end{align*} | ||
| + | |||
| + | </ | ||
| + | === toroidal coil === | ||
| + | < | ||
| + | < | ||
| + | {{url> | ||
| + | </ | ||
| + | |||
| + | A toroidal coil has a donut-like setup. This can be seen in <imgref BildNr05> | ||
| + | The toroidal coil is often defined by: | ||
| + | * The minor radius $r$: The radius | ||
| + | * The major radius $R$: The distance from the center of the entire toroid (the center of the hole) to the center of the circular cross-section of the coil. | ||
| + | For reasons of symmetry, it shall get clear that the field lines form concentric circles. \\ | ||
| + | Also the magnetic field strength $H$ in a toroidal coil is often considered as homogenious, | ||
| + | |||
| + | \begin{align*} | ||
| + | \theta = H \cdot 2\pi R = N \cdot I | ||
| + | \end{align*} | ||
| + | \begin{align*} | ||
| + | \boxed{H = {{N \cdot I}\over{2\pi R}}} \biggr | _\text{toroidal coil} | ||
| + | \end{align*} | ||
| + | </ | ||
| Zeile 158: | Zeile 200: | ||
| {{page> | {{page> | ||
| - | {{page> | ||
| {{page> | {{page> | ||
| + | {{page> | ||