Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block16 [2025/11/23 02:08] mexleadminelectrical_engineering_and_electronics_1:block16 [2026/01/10 12:46] (aktuell) mexleadmin
Zeile 1: Zeile 1:
 ====== Block 16 - Ampère's Law and Magnetomotive Force (MMF) ====== ====== Block 16 - Ampère's Law and Magnetomotive Force (MMF) ======
  
-===== Learning objectives =====+===== 16.0 Intro ===== 
 + 
 +==== 16.0.1 Learning objectives ====
 <callout> <callout>
 After this 90-minute block, you can After this 90-minute block, you can
Zeile 7: Zeile 9:
 </callout> </callout>
  
-====Preparation at Home =====+==== 16.0.2 Preparation at Home ====
  
 Well, again  Well, again 
Zeile 16: Zeile 18:
   * ...   * ...
  
-====90-minute plan =====+==== 16.0.3 90-minute plan ====
   - Warm-up (x min):    - Warm-up (x min): 
     - ....      - .... 
Zeile 24: Zeile 26:
   - Wrap-up (x min): Summary box; common pitfalls checklist.   - Wrap-up (x min): Summary box; common pitfalls checklist.
  
-====Conceptual overview =====+==== 16.0.4  Conceptual overview ====
 <callout icon="fa fa-lightbulb-o" color="blue"> <callout icon="fa fa-lightbulb-o" color="blue">
   - ...   - ...
 </callout> </callout>
  
-===== Core content =====+===== 16.1 Core content =====
  
-====Generalization of the Magnetic Field Strength =====+==== 16.1.1 Generalization of the Magnetic Field Strength ====
  
-So far, only the rotational symmetric problem on a single wire was considered in formula, when the current $I$ ant the length $s$ of a magnetic field line around it is given:+So far, only the rotational symmetric problem of a single wire was considered in formula. I.e a current $I$ and the length $s$ of a magnetic field line around the wire was given to calculate the magnetic field strength $H$:
  
 \begin{align*} \begin{align*}
Zeile 43: Zeile 45:
  
 \begin{align*} \begin{align*}
-U = E \cdot s \quad \quad | \quad \text{applies to capacitor only}+U = E \cdot s \quad \quad | \quad \text{applies to plate capacitor only}
 \end{align*} \end{align*}
  
Zeile 103: Zeile 105:
 </callout> </callout>
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 +==== 16.1.2  Recap of the fieldline images ====
  
 +<WRAP group><WRAP half column>
 +=== longitudinal coil ===
 +<WRAP>
 +<imgcaption BildNr04 | Magnetic field in a longitudinal coil></imgcaption> \\
 +{{url>https://www.falstad.com/vector3dm/vector3dm.html?f=SolenoidField&d=streamlines&sl=none&st=3&ld=5&a1=21&a2=30&a3=100&rx=63&ry=1&rz=2&zm=2.396 700,450 noborder}}
 +</WRAP>
  
 +A longitudinal coil can be seen in <imgref BildNr04>. \\ 
 +
 +The created field density of the coil can be derived from Ampere's Circuital Law
 +
 +\begin{align*} 
 +\theta(t) &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} \\ 
 +          &= \int & \vec{H}_{\rm inner}(t) \cdot {\rm d}\vec{s} & + & \int \vec{H}_{\rm outer}(t) \cdot {\rm d} \vec{s} \\ 
 +          &= \int & \vec{H}(t) \cdot {\rm d}\vec{s}             & + &   0 \\ 
 +          &     & {H}(t) \cdot l \\ 
 +\end{align*}
 +
 +The magnetic field in a toroidal coil is often considered as homogenious in the inner volume, when the length $l$ is much larger than the diameter: $l \gg d$. \\
 +With a given number $N$ of windings, the magnetic field strength $H$ is
 +
 +\begin{align*}
 +\theta = H \cdot l = N \cdot I
 +\end{align*}
 +\begin{align*}
 +\boxed{H = {{N \cdot I}\over{l}}}  \biggr | _\text{longitudinal coil}
 +\end{align*}
 +
 +</WRAP><WRAP half column>
 +=== toroidal coil ===
 +<WRAP>
 +<imgcaption BildNr05 | Magnetic field in a toroidal coil></imgcaption> \\
 +{{url>https://www.falstad.com/vector3dm/vector3dm.html?f=ToroidalSolenoidField&d=streamlines&sl=none&st=1&ld=8&a1=77&a2=26&a3=100&rx=0&ry=0&rz=0&zm=1.8 700,450 noborder}}
 +</WRAP>
 +
 +A toroidal coil has a donut-like setup. This can be seen in <imgref BildNr05>. \\ 
 +The toroidal coil is often defined by: 
 +  * The minor radius $r$: The radius  of the circular cross-section of the coil.
 +  * The major radius $R$: The distance from the center of the entire toroid (the center of the hole) to the center of the circular cross-section of the coil.
 +For reasons of symmetry, it shall get clear that the field lines form concentric circles. \\
 +Also the magnetic field strength $H$ in a toroidal coil is often considered as homogenious, when $R \gg r$. With a given number $N$ of windings, the magnetic field strength $H$ is
 +
 +\begin{align*}
 +\theta = H \cdot 2\pi R = N \cdot I 
 +\end{align*}
 +\begin{align*}
 +\boxed{H = {{N \cdot I}\over{2\pi R}}} \biggr | _\text{toroidal coil}
 +\end{align*}
  
 +</WRAP></WRAP>
  
  
-===== Common pitfalls =====+===== 16.2 Common pitfalls =====
   * ...   * ...
  
-===== Exercises =====+===== 16.3 Exercises =====
  
 <panel type="info" title="Task 3.2.3 Magnetic Potential Difference"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 3.2.3 Magnetic Potential Difference"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>