Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block16 [2025/11/23 12:18] mexleadminelectrical_engineering_and_electronics_1:block16 [2026/01/10 12:46] (aktuell) mexleadmin
Zeile 1: Zeile 1:
 ====== Block 16 - Ampère's Law and Magnetomotive Force (MMF) ====== ====== Block 16 - Ampère's Law and Magnetomotive Force (MMF) ======
  
-===== Learning objectives =====+===== 16.0 Intro ===== 
 + 
 +==== 16.0.1 Learning objectives ====
 <callout> <callout>
 After this 90-minute block, you can After this 90-minute block, you can
Zeile 7: Zeile 9:
 </callout> </callout>
  
-====Preparation at Home =====+==== 16.0.2 Preparation at Home ====
  
 Well, again  Well, again 
Zeile 16: Zeile 18:
   * ...   * ...
  
-====90-minute plan =====+==== 16.0.3 90-minute plan ====
   - Warm-up (x min):    - Warm-up (x min): 
     - ....      - .... 
Zeile 24: Zeile 26:
   - Wrap-up (x min): Summary box; common pitfalls checklist.   - Wrap-up (x min): Summary box; common pitfalls checklist.
  
-====Conceptual overview =====+==== 16.0.4  Conceptual overview ====
 <callout icon="fa fa-lightbulb-o" color="blue"> <callout icon="fa fa-lightbulb-o" color="blue">
   - ...   - ...
 </callout> </callout>
  
-===== Core content =====+===== 16.1 Core content =====
  
-====Generalization of the Magnetic Field Strength =====+==== 16.1.1 Generalization of the Magnetic Field Strength ====
  
 So far, only the rotational symmetric problem of a single wire was considered in formula. I.e a current $I$ and the length $s$ of a magnetic field line around the wire was given to calculate the magnetic field strength $H$: So far, only the rotational symmetric problem of a single wire was considered in formula. I.e a current $I$ and the length $s$ of a magnetic field line around the wire was given to calculate the magnetic field strength $H$:
Zeile 104: Zeile 106:
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-==== Recap of the fieldline images ====+==== 16.1.2  Recap of the fieldline images ====
  
 <WRAP group><WRAP half column> <WRAP group><WRAP half column>
Zeile 114: Zeile 116:
  
 A longitudinal coil can be seen in <imgref BildNr04>. \\  A longitudinal coil can be seen in <imgref BildNr04>. \\ 
 +
 +The created field density of the coil can be derived from Ampere's Circuital Law
 +
 +\begin{align*} 
 +\theta(t) &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} \\ 
 +          &= \int & \vec{H}_{\rm inner}(t) \cdot {\rm d}\vec{s} & + & \int \vec{H}_{\rm outer}(t) \cdot {\rm d} \vec{s} \\ 
 +          &= \int & \vec{H}(t) \cdot {\rm d}\vec{s}             & + &   0 \\ 
 +          &     & {H}(t) \cdot l \\ 
 +\end{align*}
 +
 The magnetic field in a toroidal coil is often considered as homogenious in the inner volume, when the length $l$ is much larger than the diameter: $l \gg d$. \\ The magnetic field in a toroidal coil is often considered as homogenious in the inner volume, when the length $l$ is much larger than the diameter: $l \gg d$. \\
 With a given number $N$ of windings, the magnetic field strength $H$ is With a given number $N$ of windings, the magnetic field strength $H$ is
Zeile 121: Zeile 133:
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-\boxed{H = {{N \cdot I}\over{l}}} \quad \quad \quad \text{longitudinal coil}+\boxed{H = {{N \cdot I}\over{l}}}  \biggr _\text{longitudinal coil}
 \end{align*} \end{align*}
  
Zeile 136: Zeile 148:
   * The major radius $R$: The distance from the center of the entire toroid (the center of the hole) to the center of the circular cross-section of the coil.   * The major radius $R$: The distance from the center of the entire toroid (the center of the hole) to the center of the circular cross-section of the coil.
 For reasons of symmetry, it shall get clear that the field lines form concentric circles. \\ For reasons of symmetry, it shall get clear that the field lines form concentric circles. \\
-Also the magnetic field strength $H$ in a toroidal coil is often considered as homogenious, when $R \gg r$.+Also the magnetic field strength $H$ in a toroidal coil is often considered as homogenious, when $R \gg r$. With a given number $N$ of windings, the magnetic field strength $H$ is
  
 \begin{align*} \begin{align*}
Zeile 142: Zeile 154:
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-\boxed{H = {{N \cdot I}\over{2\pi R}}} \quad \quad \quad \text{toroidal coil}+\boxed{H = {{N \cdot I}\over{2\pi R}}} \biggr _\text{toroidal coil}
 \end{align*} \end{align*}
  
Zeile 148: Zeile 160:
  
  
-===== Common pitfalls =====+===== 16.2 Common pitfalls =====
   * ...   * ...
  
-===== Exercises =====+===== 16.3 Exercises =====
  
 <panel type="info" title="Task 3.2.3 Magnetic Potential Difference"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 3.2.3 Magnetic Potential Difference"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>