Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |||
| electrical_engineering_and_electronics_1:block18 [2025/12/02 18:51] – mexleadmin | electrical_engineering_and_electronics_1:block18 [2025/12/02 18:52] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 269: | Zeile 269: | ||
| ===== Exercises ===== | ===== Exercises ===== | ||
| + | |||
| + | {{page> | ||
| + | {{page> | ||
| + | |||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A change of magnetic flux is passing a coil with a single winding. The following pictures <imgref ImgNrEx01> | ||
| + | |||
| + | * Create for each $\Phi(t)$-diagram the corresponding $u_{\rm ind}(t)$-diagram! | ||
| + | * Write down each maximum value of $u_{\rm ind}(t)$ | ||
| + | |||
| + | < | ||
| + | |||
| + | <button size=" | ||
| + | |||
| + | For partwise linear $u_{\rm ind}$ one can derive: | ||
| + | \begin{align*} | ||
| + | u_{\rm ind} &= -{{{\rm d}\Phi}\over{{\rm d}t}} \\ | ||
| + | &= -{{\Delta \Phi}\over{\Delta t}} | ||
| + | \end{align*} | ||
| + | |||
| + | For diagram (a): | ||
| + | |||
| + | * $t= 0.0 ... 0.6 ~\rm s$: $u_{\rm ind} = -{{0 ~\rm Vs}\over{0.6 ~\rm s}}= 0$ | ||
| + | * $t= 0.6 ... 1.5 ~\rm s$: $u_{\rm ind} = -{{-3.75\cdot 10^{-3} ~\rm Vs}\over{0.9 ~\rm s}}= +4.17 ~\rm mV$ | ||
| + | * $t= 1.5 ... 2.1 ~\rm s$: $u_{\rm ind} = -{{0 ~\rm Vs}\over{0.6 ~\rm s}}= 0$ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | {{icon> | ||
| + | < | ||
| + | </ | ||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A changing of magnetic flux is passing a coil with a single winding and induces the voltage $u_{\rm ind}(t)$. | ||
| + | The following pictures <imgref ImgNrEx02> | ||
| + | |||
| + | * Create for each $u_{\rm ind}(t)$-diagram the corresponding $\Phi(t)$-diagram! | ||
| + | * Write down each maximum value of $\Phi(t)$ | ||
| + | |||
| + | Note the given start value $\Phi_0$ for each flux. | ||
| + | |||
| + | < | ||
| + | |||
| + | # | ||
| + | |||
| + | For partwise linear $u_{\rm ind}$ one can derive: | ||
| + | \begin{align*} | ||
| + | u_{\rm ind} &= -{{{\rm d}\Phi}\over{{\rm d}t}} \\ | ||
| + | \rightarrow | ||
| + | \Phi & | ||
| + | \end{align*} | ||
| + | |||
| + | For diagram (a): | ||
| + | |||
| + | * $t= 0.00 ... 0.04 ~\rm s\quad$: $\quad \Phi = \Phi_0 - {0 \cdot \; \Delta t} \quad\quad\quad\quad\quad\quad\quad= 0 ~\rm Wb$ | ||
| + | * $t= 0.04 ... 0.10 ~\rm s\quad$: $\quad \Phi = 0 {~\rm Wb} - {{30 ~\rm mV} \cdot \; (t - 0.04 ~\rm s)} = \quad {1.2 ~\rm mWb} - t \cdot 30 ~\rm mV$ | ||
| + | * $t= 0.10 ... 0.14 ~\rm s\quad$: $\quad \Phi = {1.2 ~\rm mWb} - {0.10 ~\rm s} \cdot 30 ~\rm mV \quad = - {1.8 ~\rm mWb}$ | ||
| + | |||
| + | # | ||
| + | |||
| + | # | ||
| + | {{drawio> | ||
| + | # | ||
| + | |||
| + | |||
| + | </ | ||
| + | |||
| + | |||
| <panel type=" | <panel type=" | ||
| Zeile 467: | Zeile 542: | ||
| </ | </ | ||
| - | {{page> | ||
| - | {{page> | ||
| - | |||
| - | <panel type=" | ||
| - | |||
| - | A change of magnetic flux is passing a coil with a single winding. The following pictures <imgref ImgNrEx01> | ||
| - | |||
| - | * Create for each $\Phi(t)$-diagram the corresponding $u_{\rm ind}(t)$-diagram! | ||
| - | * Write down each maximum value of $u_{\rm ind}(t)$ | ||
| - | |||
| - | < | ||
| - | |||
| - | <button size=" | ||
| - | |||
| - | For partwise linear $u_{\rm ind}$ one can derive: | ||
| - | \begin{align*} | ||
| - | u_{\rm ind} &= -{{{\rm d}\Phi}\over{{\rm d}t}} \\ | ||
| - | &= -{{\Delta \Phi}\over{\Delta t}} | ||
| - | \end{align*} | ||
| - | |||
| - | For diagram (a): | ||
| - | |||
| - | * $t= 0.0 ... 0.6 ~\rm s$: $u_{\rm ind} = -{{0 ~\rm Vs}\over{0.6 ~\rm s}}= 0$ | ||
| - | * $t= 0.6 ... 1.5 ~\rm s$: $u_{\rm ind} = -{{-3.75\cdot 10^{-3} ~\rm Vs}\over{0.9 ~\rm s}}= +4.17 ~\rm mV$ | ||
| - | * $t= 1.5 ... 2.1 ~\rm s$: $u_{\rm ind} = -{{0 ~\rm Vs}\over{0.6 ~\rm s}}= 0$ | ||
| - | |||
| - | </ | ||
| - | |||
| - | <button size=" | ||
| - | {{icon> | ||
| - | < | ||
| - | </ | ||
| - | </ | ||
| - | |||
| - | </ | ||
| - | |||
| - | <panel type=" | ||
| - | |||
| - | A changing of magnetic flux is passing a coil with a single winding and induces the voltage $u_{\rm ind}(t)$. | ||
| - | The following pictures <imgref ImgNrEx02> | ||
| - | |||
| - | * Create for each $u_{\rm ind}(t)$-diagram the corresponding $\Phi(t)$-diagram! | ||
| - | * Write down each maximum value of $\Phi(t)$ | ||
| - | |||
| - | Note the given start value $\Phi_0$ for each flux. | ||
| - | |||
| - | < | ||
| - | |||
| - | # | ||
| - | |||
| - | For partwise linear $u_{\rm ind}$ one can derive: | ||
| - | \begin{align*} | ||
| - | u_{\rm ind} &= -{{{\rm d}\Phi}\over{{\rm d}t}} \\ | ||
| - | \rightarrow | ||
| - | \Phi & | ||
| - | \end{align*} | ||
| - | |||
| - | For diagram (a): | ||
| - | |||
| - | * $t= 0.00 ... 0.04 ~\rm s\quad$: $\quad \Phi = \Phi_0 - {0 \cdot \; \Delta t} \quad\quad\quad\quad\quad\quad\quad= 0 ~\rm Wb$ | ||
| - | * $t= 0.04 ... 0.10 ~\rm s\quad$: $\quad \Phi = 0 {~\rm Wb} - {{30 ~\rm mV} \cdot \; (t - 0.04 ~\rm s)} = \quad {1.2 ~\rm mWb} - t \cdot 30 ~\rm mV$ | ||
| - | * $t= 0.10 ... 0.14 ~\rm s\quad$: $\quad \Phi = {1.2 ~\rm mWb} - {0.10 ~\rm s} \cdot 30 ~\rm mV \quad = - {1.8 ~\rm mWb}$ | ||
| - | |||
| - | # | ||
| - | |||
| - | # | ||
| - | {{drawio> | ||
| - | # | ||
| - | |||
| - | |||
| - | </ | ||
| <panel type=" | <panel type=" | ||