Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block18 [2025/12/02 18:34] mexleadminelectrical_engineering_and_electronics_1:block18 [2025/12/02 18:52] (aktuell) mexleadmin
Zeile 237: Zeile 237:
  
 which is identical to the potential difference between the ends of the rod that we determined earlier. which is identical to the potential difference between the ends of the rod that we determined earlier.
 +
 +==== Linked Flux ====
 +
 +When looking at the magnetic field in a coil multiple windings capture the passing flux, see <imgref ImgNr14> (a). 
 +It can also be interpreted in such a way that the flux is going through the closed surface of the circuit multiple times (in picture (b)).
 +
 +<WRAP> <imgcaption ImgNr14 | Example for a linked Flux> </imgcaption> {{drawio>LinkedFlux.svg}} </WRAP>
 +
 +The **linked flux** $\Psi$ is defined as the resulting flux given by the sum of the partial fluxes of the closed circuit.
 +
 +\begin{align*} 
 +\boxed{ \Psi = \sum_{i=1}^n \Phi_{i} } 
 +\end{align*}
 +
 +For the case of a coil with $N$ windings, this leads to:
 +
 +\begin{align*} 
 +\boxed{ \Psi = N \cdot \Phi } 
 +\end{align*}
 +
 +
 +<callout icon="fa fa-exclamation" color="red" title="Notice:">
 +
 +When calculating the force, use the flux within the material ($\Phi$). \\
 +When investigating effects in the coil, use the linked flux ($\Psi$). \\
 +
 +</callout>
  
 ===== Common pitfalls ===== ===== Common pitfalls =====
Zeile 242: Zeile 269:
  
 ===== Exercises ===== ===== Exercises =====
 +
 +{{page>electrical_engineering_and_electronics:task_rdz03rspbwusy7wk_with_calculation&nofooter}}
 +{{page>electrical_engineering_and_electronics:task_ludzwiuhjxitz85b_with_calculation&nofooter}}
 +
 +
 +<panel type="info" title="Exercise 4.1.4 Effects of induction I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A change of magnetic flux is passing a coil with a single winding. The following pictures <imgref ImgNrEx01> show different flux-time-diagrams as examples.
 +
 +  * Create for each $\Phi(t)$-diagram the corresponding $u_{\rm ind}(t)$-diagram!
 +  * Write down each maximum value of $u_{\rm ind}(t)$
 +
 +<WRAP> <imgcaption ImgNrEx01| Flux-Time-Diagrams> </imgcaption> <WRAP> {{drawio>FluxTimeDia1.svg}} \\ </WRAP></WRAP>
 +
 +<button size="xs" type="link" collapse="Solution_4_1_4_1_Solution">{{icon>eye}} Solution for (a)</button><collapse id="Solution_4_1_4_1_Solution" collapsed="true">
 +
 +For partwise linear $u_{\rm ind}$ one can derive: 
 +\begin{align*} 
 +u_{\rm ind} &= -{{{\rm d}\Phi}\over{{\rm d}t}} \\ 
 +            &= -{{\Delta \Phi}\over{\Delta t}} 
 +\end{align*}
 +
 +For diagram (a):
 +
 +  * $t= 0.0 ... 0.6 ~\rm s$: $u_{\rm ind} = -{{0 ~\rm Vs}\over{0.6 ~\rm s}}= 0$
 +  * $t= 0.6 ... 1.5 ~\rm s$: $u_{\rm ind} = -{{-3.75\cdot 10^{-3} ~\rm Vs}\over{0.9 ~\rm s}}= +4.17 ~\rm mV$
 +  * $t= 1.5 ... 2.1 ~\rm s$: $u_{\rm ind} = -{{0 ~\rm Vs}\over{0.6 ~\rm s}}= 0$
 +
 +</collapse>
 +
 +<button size="xs" type="link" collapse="Solution_4_1_4_1_Finalresult">
 +{{icon>eye}} Final result for (a)</button><collapse id="Solution_4_1_4_1_Finalresult" collapsed="true"> 
 +<WRAP> <imgcaption ImgNrEx01| Flux-Time-Diagrams Solution> </imgcaption> <WRAP> {{drawio>FluxTimeDia1Solution.svg}} \\ 
 +</WRAP></WRAP> \\ 
 +</collapse>
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 4.1.5 Effects of induction II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A changing of magnetic flux is passing a coil with a single winding and induces the voltage $u_{\rm ind}(t)$. 
 +The following pictures <imgref ImgNrEx02> show different voltage-time diagrams as examples.
 +
 +  * Create for each $u_{\rm ind}(t)$-diagram the corresponding $\Phi(t)$-diagram!
 +  * Write down each maximum value of $\Phi(t)$
 +
 +Note the given start value $\Phi_0$ for each flux.
 +
 +<WRAP> <imgcaption ImgNrEx02| Voltage-Time-Diagrams> </imgcaption> <WRAP> {{drawio>FluxTimeDia2.svg}} \\ </WRAP></WRAP>
 +
 +#@HiddenBegin_HTML~415_1S,Solution for (a)~@#
 +
 +For partwise linear $u_{\rm ind}$ one can derive: 
 +\begin{align*} 
 +u_{\rm ind}        &= -{{{\rm d}\Phi}\over{{\rm d}t}} \\ 
 +\rightarrow  \Phi  &= -\int_0^t{ u_{\rm ind} \;{\rm d}t} \\
 +\Phi               &= \Phi_0 -\sum_k {u_{{\rm ind},~k} \; \Delta t} \\
 +\end{align*}
 +
 +For diagram (a):
 +
 +  * $t= 0.00 ... 0.04 ~\rm s\quad$: $\quad \Phi = \Phi_0 - {0 \cdot \; \Delta t} \quad\quad\quad\quad\quad\quad\quad= 0 ~\rm Wb$
 +  * $t= 0.04 ... 0.10 ~\rm s\quad$: $\quad \Phi =   0 {~\rm Wb} - {{30 ~\rm mV} \cdot \; (t - 0.04 ~\rm s)} = \quad {1.2 ~\rm mWb} - t \cdot 30 ~\rm mV$
 +  * $t= 0.10 ... 0.14 ~\rm s\quad$: $\quad \Phi =   {1.2 ~\rm mWb} - {0.10 ~\rm s} \cdot 30 ~\rm mV \quad = - {1.8 ~\rm mWb}$
 +
 +#@HiddenEnd_HTML~415_1S,Solution ~@#
 +
 +#@HiddenBegin_HTML~415_1R,Result for (a)~@#
 +{{drawio>FluxTimeDia2Res.svg}} 
 +#@HiddenEnd_HTML~415_1R,Result~@#
 +
 +
 +</WRAP></WRAP></panel>
 +
 +
  
 <panel type="info" title="Exercise 4.1.1 Magnetic Field Strength around a horizontal straight Conductor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 4.1.1 Magnetic Field Strength around a horizontal straight Conductor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
Zeile 440: Zeile 542:
 </collapse> </WRAP></WRAP></panel> </collapse> </WRAP></WRAP></panel>
  
 +
 +
 +<panel type="info" title="Exercise 4.1.6 Coil in magnetic Field I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A single winding is located in a homogenous magnetic field ($B = 0.5 ~\rm T$) between the pole pieces. 
 +The winding has a length of $150 ~\rm mm$ and a distance between the conductors of $50 ~\rm mm$ (see <imgref ImgNrEx03>).
 +
 +  * Determine the function $u_{\rm ind}(t)$, when the coil is rotating with $3000 ~\rm min^{-1}$.
 +  * Given a current of $20 ~\rm A$ through the winding: What is the torque $M(\varphi)$ depending on the angle between the surface vector of the winding and the magnetic field?
 +
 +<WRAP> <imgcaption ImgNrEx03| Winding between Pole Pieces> </imgcaption> <WRAP> {{drawio>WindingPolePieces.svg}} \\ </WRAP></WRAP>
 +
 +<button size="xs" type="link" collapse="Solution_4_1_6_1_Solution">{{icon>eye}} Solution</button><collapse id="Solution_4_1_6_1_Solution" collapsed="true"> 
 +\begin{align*} 
 +u_{\rm ind} &= -   {{{\rm d}\Phi}\over{{\rm d}t}} \\ 
 +            &= -         {{\rm d}\over{{\rm d}t}} B \cdot A \\
 +            &= - B \cdot {{\rm d}\over{{\rm d}t}} A\\
 +            &= - B \cdot {{\rm d}\over{{\rm d}t}} \left(l \cdot d \cdot \cos(\omega t) \right)\\
 +            &= + B \cdot l \cdot d \cdot \omega \cdot \sin(\omega t)\\ 
 +\end{align*}
 +
 +</collapse> </WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 4.1.7 Coil in magnetic Field II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A rectangular coil is given by the sizes $a=10 ~\rm cm$, $b=4 ~\rm cm$, and the number of windings $N=200$. 
 +This coil moves with a constant speed of $v=2 ~\rm m/s$ perpendicular to a homogeneous magnetic field ($B=1.3 ~\rm T$ on a length of $l=5 ~\rm cm$). 
 +The area of the coil is tilted with regard to the field in $\alpha=60°$ and enters the field from the left side (see <imgref ImgNrEx04>).
 +
 +  * Determine the function $u_{\rm ind}(t)$ on the coil along the given path. Sketch of the $u_{\rm ind}(t)$ diagram.
 +  * What is the maximum induced voltage $u_{\rm ind,Max}$?
 +
 +<WRAP> <imgcaption ImgNrEx04| Winding between Pole Pieces> </imgcaption> <WRAP> {{drawio>WindingPolePieces2.svg}} \\ </WRAP></WRAP>
 +
 +<button size="xs" type="link" collapse="Solution_4_1_7_1_Solution">{{icon>eye}} Solution</button><collapse id="Solution_4_1_7_1_Solution" collapsed="true"> 
 +
 +Let assume, that $l$ is in the $x$-axis, $\vec{B}$ in the $y$-axis and $a$. 
 +\\ \\
 +
 +**Step 1**: Calculate the effective area, perpendicular to the $\vec{B}$-field (independent from whether the area is in the $\vec{B}$-field or not).
 +
 +For this $b$ has to be projected onto the plane perpendicular to the $\vec{B}$-field: $b_{\rm eff}= b \cdot \cos \alpha$
 +\begin{align*} 
 +A_{\rm eff} &= a \cdot b \cdot \cos \alpha
 +\end{align*}
 +
 +**Step 2**: Focus on entering and exiting the $\vec{B}$-field. \\
 +Induction only occurs for ${{\rm d}\over{{\rm d}t}}(A\cdot B)\neq 0$, so here: when the area $A_{\rm eff}$ enters and leave the constant $\vec{B}$-field. 
 +
 +When entering the $\vec{B}$-field the area $A$ with $0<A<A_{eff}$ is in the field. 
 +The area moves with $v$. Therefore, after $\Delta t = b_{\rm eff} \cdot v$ the full $\vec{B}$-field is provided onto the area $A_{\rm eff}$: 
 +\begin{align*} 
 +u_{\rm ind} &= -        {{{\rm d}\Psi}\over{{\rm d}t}} \\ 
 +            &= -N \cdot       {{\rm d}\over{{\rm d}t}} B \cdot A \\ 
 +            &= -N \cdot           {{1}\over{\Delta t}} B \cdot A_{\rm eff} \\ 
 +            &= -N \cdot {{1}\over{b \cdot \cos \alpha \cdot v}} B \cdot a \cdot b \cdot \cos \alpha \\ 
 +            &= -N \cdot B \cdot {{a}\over{v}}\\ 
 +\end{align*}
 +
 +The following diagram shows ...
 +  * ... how one can derive the effective width $b_{\rm eff}$, which is projected onto the plane perpendicular to the $\vec{B}$-field: $b_{\rm eff}= b \cdot \cos \alpha$
 +  * ... what happens on the effective area $A_{\rm eff}$: there is a change of the field lines in the area only for entering and leaving the $\vec{B}$-field. 
 +  * ... how the $u_{\rm ind}(t)$ looks as a graph: the part of $A_{\rm eff}$, where the $\vec{B}$-field passes through increase linearly due to the constant speed $v$
 +Be aware, that the task did not provide a clue for the direction of windings and therefore it provides no clue for the polarization of the induced voltage. \\ 
 +So, the course of the voltage when entering or exiting is not uniquely given.
 +
 +<WRAP> <imgcaption ImgNrEx04s| Solution> </imgcaption> <WRAP>{{drawio>WindingPolePieces2solution.svg}}  \\ </WRAP></WRAP>
 +
 +
 +</collapse> </WRAP></WRAP></panel>
  
 ===== Embedded resources ===== ===== Embedded resources =====