Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block18 [2025/12/02 18:45] – mexleadmin | electrical_engineering_and_electronics_1:block18 [2025/12/06 13:47] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 14: | Zeile 14: | ||
| For checking your understanding please do the following exercises: | For checking your understanding please do the following exercises: | ||
| - | * ... | + | * Exercise E3 Coil in a magnetic Field |
| + | * Exercise 4.1.2 Magnetic Field Strength around a horizontal straight Conductor | ||
| + | * Exercise 4.1.4 Effects of induction I | ||
| ===== 90-minute plan ===== | ===== 90-minute plan ===== | ||
| Zeile 269: | Zeile 272: | ||
| ===== Exercises ===== | ===== Exercises ===== | ||
| + | |||
| + | {{page> | ||
| + | {{page> | ||
| + | |||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A change of magnetic flux is passing a coil with a single winding. The following pictures <imgref ImgNrEx01> | ||
| + | |||
| + | * Create for each $\Phi(t)$-diagram the corresponding $u_{\rm ind}(t)$-diagram! | ||
| + | * Write down each maximum value of $u_{\rm ind}(t)$ | ||
| + | |||
| + | < | ||
| + | |||
| + | <button size=" | ||
| + | |||
| + | For partwise linear $u_{\rm ind}$ one can derive: | ||
| + | \begin{align*} | ||
| + | u_{\rm ind} &= -{{{\rm d}\Phi}\over{{\rm d}t}} \\ | ||
| + | &= -{{\Delta \Phi}\over{\Delta t}} | ||
| + | \end{align*} | ||
| + | |||
| + | For diagram (a): | ||
| + | |||
| + | * $t= 0.0 ... 0.6 ~\rm s$: $u_{\rm ind} = -{{0 ~\rm Vs}\over{0.6 ~\rm s}}= 0$ | ||
| + | * $t= 0.6 ... 1.5 ~\rm s$: $u_{\rm ind} = -{{-3.75\cdot 10^{-3} ~\rm Vs}\over{0.9 ~\rm s}}= +4.17 ~\rm mV$ | ||
| + | * $t= 1.5 ... 2.1 ~\rm s$: $u_{\rm ind} = -{{0 ~\rm Vs}\over{0.6 ~\rm s}}= 0$ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | {{icon> | ||
| + | < | ||
| + | </ | ||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A changing of magnetic flux is passing a coil with a single winding and induces the voltage $u_{\rm ind}(t)$. | ||
| + | The following pictures <imgref ImgNrEx02> | ||
| + | |||
| + | * Create for each $u_{\rm ind}(t)$-diagram the corresponding $\Phi(t)$-diagram! | ||
| + | * Write down each maximum value of $\Phi(t)$ | ||
| + | |||
| + | Note the given start value $\Phi_0$ for each flux. | ||
| + | |||
| + | < | ||
| + | |||
| + | # | ||
| + | |||
| + | For partwise linear $u_{\rm ind}$ one can derive: | ||
| + | \begin{align*} | ||
| + | u_{\rm ind} &= -{{{\rm d}\Phi}\over{{\rm d}t}} \\ | ||
| + | \rightarrow | ||
| + | \Phi & | ||
| + | \end{align*} | ||
| + | |||
| + | For diagram (a): | ||
| + | |||
| + | * $t= 0.00 ... 0.04 ~\rm s\quad$: $\quad \Phi = \Phi_0 - {0 \cdot \; \Delta t} \quad\quad\quad\quad\quad\quad\quad= 0 ~\rm Wb$ | ||
| + | * $t= 0.04 ... 0.10 ~\rm s\quad$: $\quad \Phi = 0 {~\rm Wb} - {{30 ~\rm mV} \cdot \; (t - 0.04 ~\rm s)} = \quad {1.2 ~\rm mWb} - t \cdot 30 ~\rm mV$ | ||
| + | * $t= 0.10 ... 0.14 ~\rm s\quad$: $\quad \Phi = {1.2 ~\rm mWb} - {0.10 ~\rm s} \cdot 30 ~\rm mV \quad = - {1.8 ~\rm mWb}$ | ||
| + | |||
| + | # | ||
| + | |||
| + | # | ||
| + | {{drawio> | ||
| + | # | ||
| + | |||
| + | |||
| + | </ | ||
| + | |||
| + | |||
| <panel type=" | <panel type=" | ||
| Zeile 467: | Zeile 545: | ||
| </ | </ | ||
| - | {{page>electrical_engineering_and_electronics:task_rdz03rspbwusy7wk_with_calculation&nofooter}} | + | |
| - | {{page>electrical_engineering_and_electronics:task_ludzwiuhjxitz85b_with_calculation&nofooter}} | + | |
| + | <panel type=" | ||
| + | |||
| + | A single winding is located in a homogenous magnetic field ($B = 0.5 ~\rm T$) between the pole pieces. | ||
| + | The winding has a length of $150 ~\rm mm$ and a distance between the conductors of $50 ~\rm mm$ (see <imgref ImgNrEx03> | ||
| + | |||
| + | * Determine the function $u_{\rm ind}(t)$, when the coil is rotating with $3000 ~\rm min^{-1}$. | ||
| + | * Given a current of $20 ~\rm A$ through the winding: What is the torque $M(\varphi)$ depending on the angle between the surface vector of the winding and the magnetic field? | ||
| + | |||
| + | < | ||
| + | |||
| + | <button size=" | ||
| + | \begin{align*} | ||
| + | u_{\rm ind} &= - | ||
| + | & | ||
| + | &= - B \cdot {{\rm d}\over{{\rm d}t}} A\\ | ||
| + | &= - B \cdot {{\rm d}\over{{\rm d}t}} \left(l \cdot d \cdot \cos(\omega t) \right)\\ | ||
| + | &= + B \cdot l \cdot d \cdot \omega \cdot \sin(\omega t)\\ | ||
| + | \end{align*} | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A rectangular coil is given by the sizes $a=10 ~\rm cm$, $b=4 ~\rm cm$, and the number of windings $N=200$. | ||
| + | This coil moves with a constant speed of $v=2 ~\rm m/s$ perpendicular to a homogeneous magnetic field ($B=1.3 ~\rm T$ on a length of $l=5 ~\rm cm$). | ||
| + | The area of the coil is tilted with regard to the field in $\alpha=60°$ and enters the field from the left side (see <imgref ImgNrEx04> | ||
| + | |||
| + | * Determine the function $u_{\rm ind}(t)$ on the coil along the given path. Sketch of the $u_{\rm ind}(t)$ diagram. | ||
| + | * What is the maximum induced voltage $u_{\rm ind, | ||
| + | |||
| + | < | ||
| + | |||
| + | <button size=" | ||
| + | |||
| + | Let assume, that $l$ is in the $x$-axis, $\vec{B}$ in the $y$-axis and $a$. | ||
| + | \\ \\ | ||
| + | |||
| + | **Step 1**: Calculate the effective area, perpendicular to the $\vec{B}$-field (independent from whether the area is in the $\vec{B}$-field or not). | ||
| + | |||
| + | For this $b$ has to be projected onto the plane perpendicular to the $\vec{B}$-field: | ||
| + | \begin{align*} | ||
| + | A_{\rm eff} &= a \cdot b \cdot \cos \alpha | ||
| + | \end{align*} | ||
| + | |||
| + | **Step 2**: Focus on entering and exiting the $\vec{B}$-field. \\ | ||
| + | Induction only occurs for ${{\rm d}\over{{\rm d}t}}(A\cdot B)\neq 0$, so here: when the area $A_{\rm eff}$ enters and leave the constant $\vec{B}$-field. | ||
| + | |||
| + | When entering the $\vec{B}$-field the area $A$ with $0< | ||
| + | The area moves with $v$. Therefore, after $\Delta t = b_{\rm eff} \cdot v$ the full $\vec{B}$-field is provided onto the area $A_{\rm eff}$: | ||
| + | \begin{align*} | ||
| + | u_{\rm ind} &= - {{{\rm d}\Psi}\over{{\rm d}t}} \\ | ||
| + | &= -N \cdot {{\rm d}\over{{\rm d}t}} B \cdot A \\ | ||
| + | &= -N \cdot | ||
| + | &= -N \cdot {{1}\over{b \cdot \cos \alpha \cdot v}} B \cdot a \cdot b \cdot \cos \alpha \\ | ||
| + | &= -N \cdot B \cdot {{a}\over{v}}\\ | ||
| + | \end{align*} | ||
| + | |||
| + | The following diagram shows ... | ||
| + | * ... how one can derive the effective width $b_{\rm eff}$, which is projected onto the plane perpendicular to the $\vec{B}$-field: | ||
| + | * ... what happens on the effective area $A_{\rm eff}$: there is a change of the field lines in the area only for entering and leaving the $\vec{B}$-field. | ||
| + | * ... how the $u_{\rm ind}(t)$ looks as a graph: the part of $A_{\rm eff}$, where the $\vec{B}$-field passes through increase linearly due to the constant speed $v$ | ||
| + | Be aware, that the task did not provide a clue for the direction of windings and therefore it provides no clue for the polarization of the induced voltage. \\ | ||
| + | So, the course of the voltage when entering or exiting is not uniquely given. | ||
| + | |||
| + | < | ||
| + | |||
| + | |||
| + | </ | ||
| ===== Embedded resources ===== | ===== Embedded resources ===== | ||