Inhaltsverzeichnis

Block 13 - Capacitor Circuits and Energy

Learning objectives

After this 90-minute block, you can

Preparation at Home

Well, again

For checking your understanding please do the following exercises:

90-minute plan

  1. Warm-up (10 min):
    1. Quick quiz (2–3 items): series or parallel? which rule applies (constant $U$ or constant $Q$)?
    2. Recall $Q=C\,U$ and energy $W=\tfrac12 C U^2$ (units).
  2. Core concepts & derivations (35 min):
    1. Derive $C_{\rm eq}$ for series from Kirchhoff’s voltage law and $Q=\text{const.}$; derive voltage division $U_k=\dfrac{Q}{C_k}$.
    2. Derive $C_{\rm eq}$ for parallel from Kirchhoff’s current/charge balance and $U=\text{const.}$; obtain $Q_k=C_k U$.
    3. Energy in the electric field: integrate $dW=U\,dq$ → $W=\tfrac12 C U^2$; short dimensional check.
  3. Practice (35 min):
    1. Two short worked examples: mixed series/parallel network; two-capacitor divider with given $U$ (find $U_1$, $U_2$, $W$ on each).
    2. Short simulation tasks (use the two embedded Falstad circuits in this page): observe $U_k$, $Q_k$ when toggling the switch or changing values.
    3. Mini-problems: “double a plate area / halve distance” reasoning on $C$ and $W$.
  4. Wrap-up (10 min):
    1. Common-pitfalls checklist and one exit-ticket calculation.

Conceptual overview

  1. What stays the same? In series all capacitors carry the same charge $Q$; in parallel all capacitors see the same voltage $U$.
  2. How do totals form? Capacitances add inversely in series and add directly in parallel. This mirrors resistors but with the roles swapped.
  3. Voltage/charge sharing: In series, the smaller $C_k$ takes the larger $U_k$ ($U_k=Q/C_k$). In parallel, the larger $C_k$ takes the larger $Q_k$ ($Q_k=C_k U$).
  4. Energy viewpoint: Charging needs work against the field; $W=\tfrac12 C U^2=\tfrac12 Q U=\dfrac{Q^2}{2C}$. Dimensional check: $[C]=\rm F=\dfrac{A\,s}{V}$, so $[C U^2]=\dfrac{A\,s}{V}\,V^2=A\,s\,V=J$.
  5. Design intuition: Increasing plate area $A$ or dielectric $\varepsilon_r$ raises $C$ and thus stored $W$ at the same $U$; increasing gap $d$ lowers $C$.

Core content

Series Circuit of Capacitor

If capacitors are connected in series, the charging current $I$ into the individual capacitors $C_1 ... C_n$ is equal. Thus, the charges absorbed $\Delta Q$ are also equal: \begin{align*} \Delta Q = \Delta Q_1 = \Delta Q_2 = ... = \Delta Q_n \end{align*}

Furthermore, after charging, a voltage is formed across the series circuit, which corresponds to the source voltage $U_q$. This results from the addition of partial voltages across the individual capacitors. \begin{align*} U_q = U_1 + U_2 + ... + U_n = \sum_{k=1}^n U_k \end{align*}

It holds for the voltage $U_k = \Large{{Q_k}\over{C_k}}$.
If all capacitors are initially discharged, then $U_k = \Large{{\Delta Q}\over{C_k}}$ holds. Thus \begin{align*} U_q &= &U_1 &+ &U_2 &+ &... &+ &U_n &= \sum_{k=1}^n U_k \\ U_q &= &{{\Delta Q}\over{C_1}} &+ &{{\Delta Q}\over{C_2}} &+ &... &+ &{{\Delta Q}\over{C_3}} &= \sum_{k=1}^n {{1}\over{C_k}}\cdot \Delta Q \\ {{1}\over{C_{ \rm eq}}}\cdot \Delta Q &= &&&&&&&&\sum_{k=1}^n {{1}\over{C_k}}\cdot \Delta Q \end{align*}

Thus, for the series connection of capacitors $C_1 ... C_n$ :

\begin{align*} \boxed{ {{1}\over{C_{ \rm eq}}} = \sum_{k=1}^n {{1}\over{C_k}} } \end{align*} \begin{align*} \boxed{ \Delta Q_k = {\rm const.}} \end{align*}

For initially uncharged capacitors, (voltage divider for capacitors) holds: \begin{align*} \boxed{Q = Q_k} \end{align*} \begin{align*} \boxed{U_{ \rm eq} \cdot C_{ \rm eq} = U_{k} \cdot C_{k} } \end{align*}

In the simulation below, besides the parallel connected capacitors $C_1$, $C_2$,$C_3$, an ideal voltage source $U_q$, a resistor $R$, a switch $S$, and a lamp are installed.

Parallel Circuit of Capacitors

If capacitors are connected in parallel, the voltage $U$ across the individual capacitors $C_1 ... C_n$ is equal. It is therefore valid:

\begin{align*} U_q = U_1 = U_2 = ... = U_n \end{align*}

Furthermore, during charging, the total charge $\Delta Q$ from the source is distributed to the individual capacitors. This gives the following for the individual charges absorbed: \begin{align*} \Delta Q = \Delta Q_1 + \Delta Q_2 + ... + \Delta Q_n = \sum_{k=1}^n \Delta Q_k \end{align*}

If all capacitors are initially discharged, then $Q_k = \Delta Q_k = C_k \cdot U$
Thus \begin{align*} \Delta Q &= & Q_1 &+ & Q_2 &+ &... &+ & Q_n &= \sum_{k=1}^n Q_k \\ \Delta Q &= &C_1 \cdot U &+ &C_2 \cdot U &+ &... &+ &C_n \cdot U &= \sum_{k=1}^n C_k \cdot U \\ C_{ \rm eq} \cdot U &= &&&&&&&& \sum_{k=1}^n C_k \cdot U \\ \end{align*}

Thus, for the parallel connection of capacitors $C_1 ... C_n$ :

\begin{align*} \boxed{ C_{ \rm eq} = \sum_{k=1}^n C_k } \end{align*} \begin{align*} \boxed{ U_k = {\rm const.}} \end{align*}

For initially uncharged capacitors, (charge divider for capacitors) holds: \begin{align*} \boxed{\Delta Q = \sum_{k=1}^n Q_k} \end{align*}

\begin{align*} \boxed{ {{Q_k}\over{C_k}} = {{\Delta Q}\over{C_{ \rm eq}}} } \end{align*}

In the simulation below, again, besides the parallel connected capacitors $C_1$, $C_2$,$C_3$, an ideal voltage source $U_q$, a resistor $R$, a switch $S$, and a lamp are installed.

Energy in the electric Field

Now we want to see how much energy is stored in a capacitor during charging. When we want to charge a capacior charges have be separated (see Abbildung 1). This gets more and more difficult as more charges were moved, since these already moved charges create an electric field.

Abb. 1: summary of electrostatics electrical_engineering_and_electronics_1:chargingacapacitor.svg

We already had a first look onto the energy in the electric field in block09.
There, we got:

\begin{align*} \Delta W &= \int \vec{F} d\vec{r} \\ &= q \int \vec{E} d\vec{r} \\ &= q \cdot U \\ dW &= dq \cdot U \end{align*}

Now, For a capacitor we include the formula for the capacitor $C = {{q}\over{U}}$, or better its rearranged version $U = {{q}\over{C}}$:

\begin{align*} dW &= dq \cdot {{q}\over{C}} \\ \int dW &= \int {{q}\over{C}} dq \end{align*}

Here we again see, that the needed energy portion $dW$ to move a portion $dq$ is also related to the already moved charges $q$.
To get the energy $Delta W$ needed to move all of the charges $$Q = \int dq$$ we have to integrate from $0$ to $Q$:

\begin{align*} \Delta W &= \int_0^Q dW \\ &= \int_0^Q {{q}\over{C}} dq \\ &= {{1}\over{2}}{{Q^2}\over{C}} \\ \end{align*} \begin{align*} \boxed{ \Delta W = {{1}\over{2}}{{Q^2}\over{C}} = {{1}\over{2}}QU = {{1}\over{2}}CQ^2 } \end{align*}

Common pitfalls

Exercises

Task 5.8.1 Calculating a circuit of different capacitors

Task 5.9.1 Layered Capacitor Task

Exercise 5.9.2 Further capacitor charging/discharging practice Exercise

Exercise 5.9.3 Further practice charging the capacitor

Exercise 5.9.4 Charge balance of two capacitors

Exercise 5.9.5 Capacitor with glass plate

Abb. 2: Structure of a capacitor with glass plate electrical_engineering_and_electronics_1:capacitorwithglassplate.svg

Two parallel capacitor plates face each other with a distance $d_{ \rm K} = 10~{ \rm mm}$. A voltage of $U = 3'000~{ \rm V}$ is applied to the capacitor. Parallel to the capacitor plates, there is a glass plate ($\varepsilon_{ \rm r, G}=8$) with a thickness $d_{ \rm G} = 3~{ \rm mm}$ in the capacitor.

  1. Calculate the partial voltages $U_{ \rm G}$ in the glass and $U_{ \rm A}$ in the air gap.
  2. What is the maximum thickness of the glass pane if the electric field $E_{ \rm 0, G} =12 ~{ \rm kV/cm}$ must not exceed?

Exercise E1 Capacitor
(written test, approx. 12 % of a 120-minute written test, SS2024)

Older capacitive pressure sensors are based on a parallel plate capacitor setup (see left-side image).

ee2:k4wrrhf8v46gct49_question1.svg

In the following such a sensor is given with:

  • Plate area : $A=25 ~\rm mm^2$
  • Distance between both plates: $d=200 ~\rm \mu m$
  • Air between the plates: $\varepsilon_{\rm r,air}=1$
  • Supply voltage: $3.3 ~\rm V$
  • Boundary effects on the end of the layers shall be ignored in the following calculations.

$\varepsilon_{0} =8.854 \cdot 10^{-12} ~\rm F/m $

1. Calculate the capacity $C$.

Path

\begin{align*} C &= \varepsilon_0 \varepsilon_r {{A}\over{d}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 1 \cdot {{25 \cdot 10^{-6} {~\rm m} }\over{200 \cdot 10^{-6} {~\rm m} }} \end{align*}

Result

$C = 1.1 ~\rm pF$

2. Calculate the value of the displacement field between the plates, when a voltage of $U=3.3 ~\rm V$ is applied.

Path

The displacement field is given by: \begin{align*} D &= \varepsilon_0 \varepsilon_r E \\ &= \varepsilon_0 \varepsilon_r {{U}\over{d}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 1 \cdot {{3.3 {~\rm V} }\over{200 \cdot 10^{-6} {~\rm m} }} \\ \end{align*}

Result

$D = 146 \cdot 10^{-9} \rm {{C}\over{m^2}}$

3. Calculate the charge difference between both plates for a voltage of $U=3.3 ~\rm V$.

Path

There are two ways now. Either: \begin{align*} Q &= C \cdot U = 1.1 ~\rm pF \cdot 3.3 ~ V = 3.6522... ~pC \\ \end{align*} Or: \begin{align*} Q &= D \cdot A = 146 \cdot 10^{-9} \rm {{C}\over{m^2}} \cdot 25 \cdot 10^{-6} ~m^2 = 3.6522... ~pC \\ \end{align*}

Result

$Q = 3.65 ~\rm pC $

4. Due to a production problem, the right-side layer is covered with a contaminant, see the right-side image.
The contaminant has $\varepsilon_{\rm r,c}>\varepsilon_{\rm r,air}$, while the distance between the plates remains the same. Give a generalized formula $C_2=f(A,d,x,\varepsilon_{\rm r,c}, \varepsilon_{\rm r,air})$.

Path

The resulting capacity $C$ is now a series circuit of $C_{\rm air}$ and $C_{\rm c}$.
Therefore: \begin{align*} C = {{1}\over{ {{1}\over{C_{\rm air} }} + {{1}\over{ C_{\rm c}}} }} \end{align*}

With \begin{align*} C_{\rm air} &= \varepsilon_0 \varepsilon_{\rm r, air} {{A}\over{d-x}} &&= \varepsilon_0 A {{\varepsilon_{\rm r, air}}\over{d-x}} \\ C_{\rm c} &= \varepsilon_0 \varepsilon_{\rm r, c} {{A}\over{x}} &&= \varepsilon_0 A {{\varepsilon_{\rm r, c} }\over{x}} \\ \end{align*}

This leads to: \begin{align*} C = \varepsilon_0 A {{1}\over{ {{d-x}\over{\varepsilon_{\rm r, air} }} + {{x}\over{ \varepsilon_{\rm r, c}}} }} \end{align*}

Result

$C = \varepsilon_0 A {{\varepsilon_{\rm r, air} \cdot \varepsilon_{\rm r, c} }\over{ {(d-x)\cdot{\varepsilon_{\rm r, c} }} + {x\cdot{ \varepsilon_{\rm r, air}}} }}$

Exercise E2 Capacitor
(written test, approx. 7 % of a 120-minute written test, SS2022)

Given is the multilayer capacitor shown below, with the following dimensions:

  • Length of layer overlap: $l=1.5 ~\rm mm$
  • Distance between single layers: $d=1.0 ~\rm \mu m$
  • Depth of component: $w=0.7 ~\rm mm$
  • Number of layers (as shown in the picture): 3 left-side and 3 right-side layers.

ee2:y7dozgdsljqvnqge_question1.svg

The material shall have a dielectric permittivity of $\varepsilon_r=3$.
The following calculations shall ignore boundary effects on the end of the layers.

$\varepsilon_0 = 8.854 \cdot 10^{-12} ~\rm As/Vm$

1. What is the field strength in the dielectric material between the layer, when a voltage of $U=6.3 ~\rm V$ is applied?

Path

The electric field strength $E$ is given by: \begin{align*} E &= {{U}\over{d}} \\ &= {{6.3 ~\rm V}\over{1 \cdot 10^{-6} ~\rm m}} \\ \end{align*}

Result

$E = 6.3 {{\rm MV}\over{\rm m}}$

2. Calculate the capacity $C$.

Path

The capacity can be derived from the geometry by: \begin{align*} C = \varepsilon_0 \varepsilon_r {{A}\over{d}} \end{align*}

For the area $A$ we have multiple plates with the area $A_0= l \cdot w$ facing each other.

ee2:y7dozgdsljqvnqge_answer1.svg

How many „multiple plates“ $N$ do we have to consider?
For this, we have to count facing areas $A_0$. There are $N=5$.

ee2:y7dozgdsljqvnqge_answer2.svg

Therefore, the formula is \begin{align*} C &= \varepsilon_0 \varepsilon_r {{N \cdot l \cdot w}\over{d}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 3 \cdot {{5 \cdot 1.5 \cdot 10^{-3} {~\rm m} \cdot 0.7 \cdot 10^{-3} {~\rm m} }\over{1 \cdot 10^{-6} {~\rm m} }} \end{align*}

Result

$C = 0.139 ~\rm nF$

3. Due to a production problem the left-side layers are covered with $d_{\rm c}=0.1 ~\rm \mu m$ of air ($\varepsilon_{r, \rm c}=1$), while the thickness of the dielectric material remains the same.
What is the new capacity $C_\rm c$?

Path

The air builds another capacitor in series to the dielectric material. Therefore, the capacity can be calculated as \begin{align*} C_{\rm c} &= {{C \cdot C_{\rm Air}}\over{C + C_{\rm Air}}} \end{align*}

The capacity of air is \begin{align*} C_{\rm Air} &= \varepsilon_0 \varepsilon_{r,\rm Air} {{N \cdot l \cdot w}\over{d_{\rm c}}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 1 \cdot {{5 \cdot 1.5 \cdot 10^{-3} {~\rm m} \cdot 0.7 \cdot 10^{-3} {~\rm m} }\over{0.1 \cdot 10^{-6} {~\rm m} }} \\ &= 0.465... ~\rm nF \end{align*}

By this the overall capacity is \begin{align*} C_{\rm c} &= {{0.139... ~\rm nF \cdot 0.465... ~\rm nF}\over{0.139... ~\rm nF + 0.465... ~\rm nF}} \end{align*}

Result

$C_{\rm c} = 0.107~\rm nF$

Embedded resources

The equivalent capacitor for series of parallel configuration is well explained here