Well, again
For checking your understanding please do the following exercises:
If capacitors are connected in series, the charging current $I$ into the individual capacitors $C_1 ... C_n$ is equal. Thus, the charges absorbed $\Delta Q$ are also equal: \begin{align*} \Delta Q = \Delta Q_1 = \Delta Q_2 = ... = \Delta Q_n \end{align*}
Furthermore, after charging, a voltage is formed across the series circuit, which corresponds to the source voltage $U_q$. This results from the addition of partial voltages across the individual capacitors. \begin{align*} U_q = U_1 + U_2 + ... + U_n = \sum_{k=1}^n U_k \end{align*}
It holds for the voltage $U_k = \Large{{Q_k}\over{C_k}}$.
If all capacitors are initially discharged, then $U_k = \Large{{\Delta Q}\over{C_k}}$ holds.
Thus
\begin{align*}
U_q &= &U_1 &+ &U_2 &+ &... &+ &U_n &= \sum_{k=1}^n U_k \\
U_q &= &{{\Delta Q}\over{C_1}} &+ &{{\Delta Q}\over{C_2}} &+ &... &+ &{{\Delta Q}\over{C_3}} &= \sum_{k=1}^n {{1}\over{C_k}}\cdot \Delta Q \\
{{1}\over{C_{ \rm eq}}}\cdot \Delta Q &= &&&&&&&&\sum_{k=1}^n {{1}\over{C_k}}\cdot \Delta Q
\end{align*}
Thus, for the series connection of capacitors $C_1 ... C_n$ :
\begin{align*} \boxed{ {{1}\over{C_{ \rm eq}}} = \sum_{k=1}^n {{1}\over{C_k}} } \end{align*} \begin{align*} \boxed{ \Delta Q_k = {\rm const.}} \end{align*}
For initially uncharged capacitors, (voltage divider for capacitors) holds: \begin{align*} \boxed{Q = Q_k} \end{align*} \begin{align*} \boxed{U_{ \rm eq} \cdot C_{ \rm eq} = U_{k} \cdot C_{k} } \end{align*}
In the simulation below, besides the parallel connected capacitors $C_1$, $C_2$,$C_3$, an ideal voltage source $U_q$, a resistor $R$, a switch $S$, and a lamp are installed.
If capacitors are connected in parallel, the voltage $U$ across the individual capacitors $C_1 ... C_n$ is equal. It is therefore valid:
\begin{align*} U_q = U_1 = U_2 = ... = U_n \end{align*}
Furthermore, during charging, the total charge $\Delta Q$ from the source is distributed to the individual capacitors. This gives the following for the individual charges absorbed: \begin{align*} \Delta Q = \Delta Q_1 + \Delta Q_2 + ... + \Delta Q_n = \sum_{k=1}^n \Delta Q_k \end{align*}
If all capacitors are initially discharged, then $Q_k = \Delta Q_k = C_k \cdot U$
Thus
\begin{align*}
\Delta Q &= & Q_1 &+ & Q_2 &+ &... &+ & Q_n &= \sum_{k=1}^n Q_k \\
\Delta Q &= &C_1 \cdot U &+ &C_2 \cdot U &+ &... &+ &C_n \cdot U &= \sum_{k=1}^n C_k \cdot U \\
C_{ \rm eq} \cdot U &= &&&&&&&& \sum_{k=1}^n C_k \cdot U \\
\end{align*}
Thus, for the parallel connection of capacitors $C_1 ... C_n$ :
\begin{align*} \boxed{ C_{ \rm eq} = \sum_{k=1}^n C_k } \end{align*} \begin{align*} \boxed{ U_k = {\rm const.}} \end{align*}
For initially uncharged capacitors, (charge divider for capacitors) holds: \begin{align*} \boxed{\Delta Q = \sum_{k=1}^n Q_k} \end{align*}
\begin{align*} \boxed{ {{Q_k}\over{C_k}} = {{\Delta Q}\over{C_{ \rm eq}}} } \end{align*}
In the simulation below, again, besides the parallel connected capacitors $C_1$, $C_2$,$C_3$, an ideal voltage source $U_q$, a resistor $R$, a switch $S$, and a lamp are installed.
Now we want to see how much energy is stored in a capacitor during charging. When we want to charge a capacior charges have be separated (see Abbildung 1). This gets more and more difficult as more charges were moved, since these already moved charges create an electric field.
We already had a first look onto the energy in the electric field in block09.
There, we got:
\begin{align*} \Delta W &= \int \vec{F} d\vec{r} \\ &= q \int \vec{E} d\vec{r} \\ &= q \cdot U \\ dW &= dq \cdot U \end{align*}
Now, For a capacitor we include the formula for the capacitor $C = {{q}\over{U}}$, or better its rearranged version $U = {{q}\over{C}}$:
\begin{align*} dW &= dq \cdot {{q}\over{C}} \\ \int dW &= \int {{q}\over{C}} dq \end{align*}
Here we again see, that the needed energy portion $dW$ to move a portion $dq$ is also related to the already moved charges $q$.
To get the energy $Delta W$ needed to move all of the charges $$Q = \int dq$$ we have to integrate from $0$ to $Q$:
\begin{align*} \Delta W &= \int_0^Q dW \\ &= \int_0^Q {{q}\over{C}} dq \\ &= {{1}\over{2}}{{Q^2}\over{C}} \\ \end{align*} \begin{align*} \boxed{ \Delta W = {{1}\over{2}}{{Q^2}\over{C}} = {{1}\over{2}}QU = {{1}\over{2}}CQ^2 } \end{align*}
Two parallel capacitor plates face each other with a distance $d_{ \rm K} = 10~{ \rm mm}$. A voltage of $U = 3'000~{ \rm V}$ is applied to the capacitor. Parallel to the capacitor plates, there is a glass plate ($\varepsilon_{ \rm r, G}=8$) with a thickness $d_{ \rm G} = 3~{ \rm mm}$ in the capacitor.
Older capacitive pressure sensors are based on a parallel plate capacitor setup (see left-side image).
In the following such a sensor is given with:
$\varepsilon_{0} =8.854 \cdot 10^{-12} ~\rm F/m $
1. Calculate the capacity $C$.
2. Calculate the value of the displacement field between the plates, when a voltage of $U=3.3 ~\rm V$ is applied.
The displacement field is given by: \begin{align*} D &= \varepsilon_0 \varepsilon_r E \\ &= \varepsilon_0 \varepsilon_r {{U}\over{d}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 1 \cdot {{3.3 {~\rm V} }\over{200 \cdot 10^{-6} {~\rm m} }} \\ \end{align*}
3. Calculate the charge difference between both plates for a voltage of $U=3.3 ~\rm V$.
4. Due to a production problem, the right-side layer is covered with a contaminant, see the right-side image.
The contaminant has $\varepsilon_{\rm r,c}>\varepsilon_{\rm r,air}$, while the distance between the plates remains the same.
Give a generalized formula $C_2=f(A,d,x,\varepsilon_{\rm r,c}, \varepsilon_{\rm r,air})$.
With \begin{align*} C_{\rm air} &= \varepsilon_0 \varepsilon_{\rm r, air} {{A}\over{d-x}} &&= \varepsilon_0 A {{\varepsilon_{\rm r, air}}\over{d-x}} \\ C_{\rm c} &= \varepsilon_0 \varepsilon_{\rm r, c} {{A}\over{x}} &&= \varepsilon_0 A {{\varepsilon_{\rm r, c} }\over{x}} \\ \end{align*}
This leads to: \begin{align*} C = \varepsilon_0 A {{1}\over{ {{d-x}\over{\varepsilon_{\rm r, air} }} + {{x}\over{ \varepsilon_{\rm r, c}}} }} \end{align*}
Given is the multilayer capacitor shown below, with the following dimensions:
The material shall have a dielectric permittivity of $\varepsilon_r=3$.
The following calculations shall ignore boundary effects on the end of the layers.
$\varepsilon_0 = 8.854 \cdot 10^{-12} ~\rm As/Vm$
1. What is the field strength in the dielectric material between the layer, when a voltage of $U=6.3 ~\rm V$ is applied?
2. Calculate the capacity $C$.
The capacity can be derived from the geometry by: \begin{align*} C = \varepsilon_0 \varepsilon_r {{A}\over{d}} \end{align*}
For the area $A$ we have multiple plates with the area $A_0= l \cdot w$ facing each other.
How many „multiple plates“ $N$ do we have to consider?
For this, we have to count facing areas $A_0$. There are $N=5$.
Therefore, the formula is \begin{align*} C &= \varepsilon_0 \varepsilon_r {{N \cdot l \cdot w}\over{d}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 3 \cdot {{5 \cdot 1.5 \cdot 10^{-3} {~\rm m} \cdot 0.7 \cdot 10^{-3} {~\rm m} }\over{1 \cdot 10^{-6} {~\rm m} }} \end{align*}
3. Due to a production problem the left-side layers are covered with $d_{\rm c}=0.1 ~\rm \mu m$ of air ($\varepsilon_{r, \rm c}=1$), while the thickness of the dielectric material remains the same.
What is the new capacity $C_\rm c$?
The capacity of air is \begin{align*} C_{\rm Air} &= \varepsilon_0 \varepsilon_{r,\rm Air} {{N \cdot l \cdot w}\over{d_{\rm c}}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 1 \cdot {{5 \cdot 1.5 \cdot 10^{-3} {~\rm m} \cdot 0.7 \cdot 10^{-3} {~\rm m} }\over{0.1 \cdot 10^{-6} {~\rm m} }} \\ &= 0.465... ~\rm nF \end{align*}
By this the overall capacity is \begin{align*} C_{\rm c} &= {{0.139... ~\rm nF \cdot 0.465... ~\rm nF}\over{0.139... ~\rm nF + 0.465... ~\rm nF}} \end{align*}
The equivalent capacitor for series of parallel configuration is well explained here