Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block20 [2025/12/02 17:12] – angelegt mexleadminelectrical_engineering_and_electronics_1:block20 [2025/12/02 18:50] (aktuell) mexleadmin
Zeile 31: Zeile 31:
 ===== Core content ===== ===== Core content =====
  
-...+==== Self-Induction ==== 
 + 
 +Up to now, we investigated the induction of electric voltages and currents based on the change of an external flux ${\rm d}\Psi / {\rm d}t$ 
 +For the induced current $i_{\rm ind}$, we found that it counteracts the change of the external flux (Lenz law). 
 + 
 +But what happens, when there is no external field - only a coil which creates the flux change itself (see <imgref ImgNr46>)? 
 + 
 +<WRAP> <imgcaption ImgNr46 | Induction Phenomenons> </imgcaption> {{drawio>InductionPhenomenons.svg}} </WRAP> 
 + 
 +To understand this, we will investigate the situation for a long coil (<imgref ImgNr15>). 
 + 
 +<WRAP> <imgcaption ImgNr15 | Self-Induction of a Coil> </imgcaption> {{drawio>SelfInductionCoil.svg}} </WRAP> 
 + 
 +The created field density of the coil can be derived from Ampere's Circuital Law 
 + 
 +\begin{align*}  
 +\theta(t) &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} \\  
 +          &= \int & \vec{H}_{\rm inner}(t) \cdot {\rm d}\vec{s} & + & \int \vec{H}_{\rm outer}(t) \cdot {\rm d} \vec{s} \\  
 +          &= \int & \vec{H}(t) \cdot {\rm d}\vec{s}             & + &   0 \\  
 +          &     & {H}(t) \cdot l \\  
 +\end{align*} 
 + 
 +With magnetic voltage $\theta(t) = N \cdot i$ this lead to the magnetic flux density $B(t)$ 
 + 
 +\begin{align*}  
 +N \cdot i &= {H}(t) \cdot l \\  
 +   {H}(t) &                        {{N \cdot i }\over {l}} \\  
 +   {B}(t) &= \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \\  
 +\end{align*} 
 + 
 +Based on the magnetic flux density $B(t)$ it is possible to calculate the flux $\Phi(t)$: 
 + 
 +\begin{align*}  
 +\Phi(t) &= \iint_A \vec{B}(t)                                      \cdot {\rm d}\vec{A} \\  
 +        &= \iint_A \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot {\rm d}A \\  
 +        &        \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot A \\  
 +\end{align*} 
 + 
 +The changing flux $\Phi$ is now creating an induced electric voltage and current, which counteracts the initial change of the current.  
 +This effect is called **Self Induction**. The induced electric voltage $u_{\rm ind}$ is given by: 
 + 
 +\begin{align*}  
 +u_{\rm ind} &= - N \cdot {{{\rm d}                                                   \Phi(t)}\over{{\rm d}t}} \\  
 +            &= - N \cdot {{{\rm d} (\mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot A)}\over{{\rm d}t}} \\  
 +            &= - N \cdot            \mu_0 \mu_{\rm r} \cdot {{N \cdot A }\over {l}} \cdot {{{\rm d}i}\over{{\rm d}t}} \\  
 +\end{align*} 
 + 
 +\begin{align*}  
 +\boxed{ u_{\rm ind} = - \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \cdot {{{\rm d}i}\over{{\rm d}t}} \\ } \\  
 +\text{for a long coil}  
 +\end{align*} 
 + 
 +The result means that the induced electric voltage $u_{\rm ind}$ is proportional to the change of the current ${{\rm d}\over{{\rm d}t}}i$.  
 +The proportionality factor is also called **Self-inductance**  $L$ (or often simply called inductance). 
 + 
 +===== 4.5 Inductance ===== 
 + 
 +The inductance is another passive basic component of the electric circuit.  
 +Besides the ohmic resistor $R$ and the capacitor $C$, the inductor $L$ is the lump component entailing the inductance. 
 + 
 +Generally, the inductance is defined by:  
 +\begin{align*}  
 +\boxed{ L = \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\ }  
 +\end{align*} 
 + 
 +The inductance $L$ can also be described differently based on Lenz law $u_{\rm ind} = - {{\rm d}\over{{\rm d}t}}\Psi(t)$ : 
 + 
 +\begin{align*}  
 +L &= \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\  
 +  & {{{d \Psi(t)}/{dt}}\over{{\rm d}i / {\rm d}t}} \\  
 +\end{align*} 
 + 
 +\begin{align*} \boxed{ L = {{ \Psi(t)}\over{i}} } \end{align*} 
 + 
 +One can also consider an inductor a "conservative person": it does not like to see abrupt changes in the passing current.  
 +It reacts to any change in the current with a counteracting voltage since the current change leads to a changing flux and - therefore - an induced voltage.  
 +The <imgref BildNr5> shows an inductor in series with a resistor and a switch (any real switch also behaves as a capacitor, when open).  
 +Once the simulation is started, the inductor directly counteracts the current, which is why the current only slowly increases. 
 + 
 +The unit of the inductance is $\rm 1 ~Henry = 1 ~H = 1 {{Vs}\over{A}} = 1{{Wb}\over{A}} $ 
 + 
 +<WRAP> <imgcaption BildNr5 | Example of a Circuit with an Inductor> </imgcaption> \\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCBMCmC0CcIAsA6ADAdgBwFYMYGYcd4CyCsQc0rlIq4wwAoANyiRoLSQ5qfo0anWkJBoUOZgBsQZAGzh5XAosiReQ9GghDmAJzmqoGo4u6bwaNMwIYVigWaX9x45gHc+cns4vuADyUCKDRKMAw1JmQOEABXZiCIykgwRywUsEReMEobIKRUqAxeJDJijBjckAAlROQ0NXlFJCyoeWzYhIL1UJCy+khGqsoAGXrOSqycOn54Sl5TbuQwGbAy2fAkFtiAS09vJwVwMEF6oZpUlKGTCFKaQGTCers1NBmCeFeFhpAnoLtFh05PBFhh6PdfswAPbgEDySwBLBgHTQEBYLS6KBYsSXdwwkLwtyI5FgAAmonQayxgjktIkaDOQA noborder}} </WRAP> 
 + 
 +Mathematically the voltages can be described in the following way: 
 + 
 +\begin{align*}  
 +u_0 &= u_R &+ &u_L \\  
 +    &= i \cdot R & + &     {{{\rm d}\Psi}\over{{\rm d}t}} \\  
 +    &= i \cdot R & + &L \cdot {{{\rm d}i}\over{{\rm d}t}} \\  
 +\end{align*} 
 + 
 +==== Inductance of different Components ==== 
 + 
 +=== Long Coil === 
 + 
 +In the last sub-chapter, the formula of a long coil was already investigated.  
 +By these, the inductance of a long coil is 
 + 
 +\begin{align*}  
 +\boxed{L_{\rm long \; coil} = \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}}}  
 +\end{align*} 
 + 
 +=== Toroidal Coil === 
 + 
 +The toroidal coil was analyzed in the last chapter(see [[:electrical_engineering_2:the_magnetostatic_field#magnetic_field_strength_part_1toroidal_coil|magnetic Field Strength Part 1: Toroidal Coil]]).  
 +Here, a rectangular intersection a assumed (see <imgref ImgNr16>). 
 + 
 +<WRAP> <imgcaption ImgNr16 | Self-Induction of a toroidal Coil> </imgcaption> {{drawio>SelfInductionToroCoil.svg}} </WRAP> 
 + 
 +This leads to 
 + 
 +\begin{align*} H(t) = {{N \cdot i}\over {l}} \end{align*} 
 + 
 +with the mean magnetic path length (= length of the average field line) $l = \pi(r_{\rm o} + r_{\rm i})$: 
 + 
 +\begin{align*} H(t) = {{N \cdot i}\over { \pi(r_{\rm o} + r_{\rm i})}} \end{align*} 
 + 
 +The inductance $L$ can be calculated by 
 + 
 +\begin{align*}  
 +L_{\rm toroidal \; coil} &        {{ \Psi(t)}\over{i}} \\  
 +                         &= {{ N \cdot \Phi(t)}\over{i}} \\  
 +\end{align*} 
 + 
 +With the magnetic flux density $B(t) = \mu_0 \mu_{\rm r} H(t) = \mu_0 \mu_{\rm r} {{i \cdot N }\over {l}}$ and the cross section $A = h (r_{\rm o} - r_{\rm i})$, we get: 
 + 
 +\begin{align*}  
 +\quad \quad L_{\rm toroidal \; coil} &= {{   N \cdot \mu_0 \mu_{\rm r} {{i \cdot N } \over { \pi(r_{\rm o} + r_{\rm i})}} \cdot h(r_{\rm o} - r_{\rm i})}\over{i}} \\  
 +                                     &= {{ N^2 \cdot \mu_0 \mu_{\rm r}                                                    \cdot h(r_{\rm o} - r_{\rm i})}\over{ \pi(r_{\rm o} + r_{\rm i})}} \\  
 +\end{align*} 
 + 
 +\begin{align*}  
 +\boxed{ L_{\rm toroidal \; coil} = \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{ h(r_{\rm o} - r_{\rm i})}\over{ \pi(r_{\rm o} + r_{\rm i})}} }  
 +\end{align*} 
 + 
 + 
 +==== 6 Inductances in Circuits ==== 
 + 
 +Focus here: uncoupled inductors! 
 + 
 +=== Series Circuits === 
 + 
 +Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff's mesh law ($i=\rm const$) the series circuit of inductions can be interpreted as a single current $i$ which generates multiple linked fluxes $\Psi$. Since the current must stay constant in the series circuit, the following applies for the equivalent inductor of a series connection of single ones: 
 + 
 +\begin{align*} L_{\rm eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*} 
 + 
 +A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$): 
 + 
 +\begin{align*}  
 +& u_{\rm eq}                                       & = &u_1                                    & + &u_2                        &+ ... \\  
 +& L_{\rm eq} {{{\rm d}i_{\rm eq} }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i_{1} }\over{{\rm d}t}} & + &L_{2} {{di_{2} }\over{dt}} &+ ... \\  
 +& L_{\rm eq} {{{\rm d}i }\over{{\rm d}t}}          & = &L_{1} {{{\rm d}i     }\over{{\rm d}t}} & + &L_{2} {{di     }\over{dt}} &+ ... \\  
 +& L_{\rm eq}                                       & = &L_{1}                                  & + &L_{2}                      &+ ... \\  
 +\end{align*} 
 + 
 +===Parallel Circuits === 
 + 
 +For parallel circuits, one can also start with the principles based on Kirchhoff's mesh law: 
 + 
 +\begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*} 
 + 
 +and Kirchhoff's nodal law: 
 + 
 +\begin{align*} i_{\rm eq}= i_1 + i_2 + ... \\ \end{align*} 
 + 
 +Here, the formula for the induced voltage has to be rearranged: 
 + 
 +\begin{align*}  
 +     u_{\rm ind}          &= L {{{\rm d}i}\over{{\rm d}t}} \quad \quad \quad \quad \bigg| \int(){\rm d}t \\  
 +\int u_{\rm ind} {\rm d}t &= L \cdot i \\  
 +                        i &= {{1}\over{L}} \cdot \int u_{\rm ind} {\rm d}t \\  
 +\end{align*} 
 + 
 +By this, we get: 
 + 
 +\begin{align*}  
 +                                  i_{\rm eq}          &=& i_1                                       &+& i_2                                       &+& ... \\  
 +{{1}\over{L_{\rm eq}}} \cdot \int u_{\rm eq} {\rm d}t &=& {{1}\over{L_1}} \cdot \int u_{1} {\rm d}t &+& {{1}\over{L_2}} \cdot \int u_{2} {\rm d}t &+& ... \\  
 +{{1}\over{L_{\rm eq}}} \cdot \int u          {\rm d}t &=& {{1}\over{L_1}} \cdot \int u     {\rm d}t &+& {{1}\over{L_2}} \cdot \int u     {\rm d}t &+& ... \\  
 +{{1}\over{L_{\rm eq}}}                                &=& {{1}\over{L_1}}                           &+& {{1}\over{L_2}}                           &+& ... \\  
 +\end{align*} 
 + 
 +<callout icon="fa fa-exclamation" color="red" title="Notice:"> The inductor behaves in the parallel and series circuit similar to the resistor. </callout> 
 + 
 + 
  
 ===== Common pitfalls ===== ===== Common pitfalls =====
Zeile 37: Zeile 222:
  
 ===== Exercises ===== ===== Exercises =====
 +
  
 {{page>electrical_engineering_and_electronics:task_ljxf80q7vxywehqf_with_calculation&nofooter}} {{page>electrical_engineering_and_electronics:task_ljxf80q7vxywehqf_with_calculation&nofooter}}
 {{page>electrical_engineering_and_electronics:task_unkkahm3u0v9azny_with_calculation&nofooter}} {{page>electrical_engineering_and_electronics:task_unkkahm3u0v9azny_with_calculation&nofooter}}
-{{page>electrical_engineering_and_electronics:task_rdz03rspbwusy7wk_with_calculation&nofooter}} 
-{{page>electrical_engineering_and_electronics:task_ludzwiuhjxitz85b_with_calculation&nofooter}} 
  
 +<panel type="info" title="Exercise 4.5.1 Self Induction I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +Calculate the inductance for the following settings
 +
 +1. Cylindrical long air coil with $N=390$, winding diameter $d=3.0 ~\rm cm$ and length $l=18 ~\rm cm$
 +#@HiddenBegin_HTML~4511S,Solution~@#
 +
 +\begin{align*} 
 +L_1 &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\
 +    &= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (390)^2 \cdot {{\pi \cdot (0.03~\rm m)^2 }\over {0.18 ~\rm m}}
 +\end{align*}
 +
 +#@HiddenEnd_HTML~4511S,Solution ~@#
 +
 +#@HiddenBegin_HTML~4511R,Result~@#
 +\begin{align*} 
 +L_1 &= 3.0 ~\rm mH
 +\end{align*}
 +#@HiddenEnd_HTML~4511R,Result~@#
 +
 +2. Similar coil geometry as explained in 1. , but with double the number of windings
 +
 +#@HiddenBegin_HTML~4512S,Solution~@#
 +\begin{align*} 
 +L_2 &= \mu_0 \mu_{\rm r} \cdot N_2^2 \cdot {{A }\over {l}} \\
 +    &= \mu_0 \mu_{\rm r} \cdot (2\cdot N)^2 \cdot {{A }\over {l}} \\
 +    &= \mu_0 \mu_{\rm r} \cdot 4\cdot N^2 \cdot {{A }\over {l}} \\
 +    &= 4\cdot L_1 \\
 +\end{align*}
 +#@HiddenEnd_HTML~4512S,Solution ~@#
 +
 +#@HiddenBegin_HTML~4512R,Result~@#
 +\begin{align*} 
 +L_1 &= 12 ~\rm mH
 +\end{align*}
 +#@HiddenEnd_HTML~4512R,Result~@#
 +
 +3. Two coils as explained in 1. in series
 +
 +#@HiddenBegin_HTML~4513S,Solution~@#
 +multiple inductances in series just add up. One can think of adding more windings to the first coil in the formula..
 +
 +#@HiddenEnd_HTML~4513S,Solution ~@#
 +
 +#@HiddenBegin_HTML~4513R,Result~@#
 +\begin{align*} 
 +L_1 &= 6.0 ~\rm mH
 +\end{align*}
 +#@HiddenEnd_HTML~4513R,Result~@#
 +
 +4. Similar coil geometry and number of windings as explained in 1. , but with an iron core ($\mu_{\rm r}=1000$)
 +
 +#@HiddenBegin_HTML~4514S,Solution~@#
 +\begin{align*} 
 +L_4 &= \mu_0 \mu_{\rm r,4} \cdot N^2 \cdot {{A }\over {l}} \\
 +    &= \mu_0 \cdot 1000 \cdot N^2 \cdot {{A }\over {l}} \\
 +    &= 1000 \cdot L_4 \\
 +\end{align*}
 +#@HiddenEnd_HTML~4514S,Solution ~@#
 +
 +#@HiddenBegin_HTML~4514R,Result~@#
 +\begin{align*} 
 +L_4 &= 3.0 ~\rm H
 +\end{align*}
 +#@HiddenEnd_HTML~4514R,Result~@#
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 4.5.2 Self Induction II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A cylindrical air coil (length $l=40 ~\rm cm$, diameter $d=5.0 ~\rm cm$, and a number of windings $N=300$) passes a current of $30 ~\rm A$. The current shall be reduced linearly in $2.0 ~\rm ms$ down to $0.0 ~\rm A$.
 +
 +What is the amount of the induced voltage $u_{\rm ind}$? 
 +
 +#@HiddenBegin_HTML~4521S,Solution~@#
 +
 +The requested induced voltage can be derived by:
 +
 +\begin{align*} 
 +L                                      &= \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\ 
 +\rightarrow  \left|u_{\rm ind}\right|  &= L \cdot \left|{{{\rm d}i}\over{{\rm d}t}}\right| \\ 
 +                                       &= L \cdot \left|{{\Delta i}\over{\Delta t}}\right| \\ 
 +\end{align*}
 +
 +Therefore, we just need the inductance $L$, since ${{\Delta i}\over{\Delta t}}$ is defined as $30 ~\rm A$ per $2 ~\rm ms$:
 +
 +\begin{align*} 
 +L &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\
 +\end{align*}
 +
 +So, the result can be derived as:
 +\begin{align*} 
 +\left|u_{\rm ind}\right| &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \cdot \left|{{\Delta i}\over{\Delta t}}\right| \\
 +                         &= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (300)^2 \cdot {{\pi \cdot (0.05~\rm m)^2 }\over {0.40 ~\rm m}} \cdot {{30 ~\rm A}\over{2 ~\rm ms}}
 +\end{align*}
 +#@HiddenEnd_HTML~4521S,Solution ~@#
 +
 +#@HiddenBegin_HTML~1,Result~@#
 +\begin{align*} 
 +\left|u_{\rm ind}\right| &= 33 ~\rm V\end{align*}
 +#@HiddenEnd_HTML~1,Result~@#
 +
 +
 +</WRAP></WRAP></panel>
 +
 +<panel type="info" title="Exercise 4.5.3 Self Induction III"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +A coil with the inductance $L=20 ~\rm µH$ passes a current of $40 ~\rm A$. The current shall be reduced linearly in $5 ~\rm µs$ down to $0 ~\rm A$ (see <imgref ImgNrEx05>).
 +
 +  * What is the amount of the induced voltage $u_{\rm ind}$?
 +  * Sketch the course of $u_{\rm ind}(t)$!
 +
 +<WRAP> <imgcaption ImgNrEx05| Circuit and timing Diagram> </imgcaption> <WRAP> {{drawio>CircuitAndTiming.svg}} \\ </WRAP></WRAP>
 +
 +</WRAP></WRAP></panel>
  
 ===== Embedded resources ===== ===== Embedded resources =====